Sulfur Incorporation: Copper-Catalyzed Cascade Cyclization of 1,7- Enynes with Metal Sulfides toward Thieno[3,4-c]quinolin-4(5H)-ones

Yu Liu,† Jia-Ling Zhang,† Ren-Jie Song,† and Jin-Heng Li*,†,‡

† State Key Laboratory of Chemo/Biosensing and Chemometrics, College [of](#page-2-0) Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China

‡ State Key Laboratory of Applied Organic Chemistry Lanzhou University, Lanzhou 730000, China

S Supporting Information

[AB](#page-2-0)STRACT: [A novel copp](#page-2-0)er-catalyzed cascade cyclization of 1,7-enynes with metal sulfides is described. This sulfurincorporation method provides straightforward access toward the important thiophene-fused quinolin- $4(SH)$ -one scaffold through cyclization and double C−S bond formation cascade, and the chemoselectivity of this 1,7-enyne cyclization toward 1,3,3a,9b-tetrahydrothieno[3,4-c]quinolin-4(5H)-ones and

 $3,3a$ -dihydrothieno $[3,4-c]$ quinolin- $4(5H)$ -ones can be controlled by varying the sulfur resources.

 \mathbf{M} etal-catalyzed 1,*n*-enyne cyclization processes have
for constructing complex functionalized polygralia sing sustance for constructing complex, functionalized polycyclic ring systems in an atom- and step-economical manner.1−⁴ In this field, cycloisomerization, skeletal rearrangement, and metathesis are excellent [s](#page-3-0)trategies for the $1, n$ -enyne cyclizati[on](#page-2-0)s that have been well-documented.^{1,2} However, the majority of these strategies are triggered by interaction among a noble transition metal, a π orbital of acetylen[e,](#page-2-0) [a](#page-3-0)nd a π -orbital of alkene, thereby limiting the distance between the acetylene and the alkene in $1, n$ -enynes (often 1,6-enynes) due to a combination of entropic factors and the presence of nonbonding interactions in the transition state.^{1−4} Finding a means to realize remote 1,n-enyne cyclization using inexpensive transition-metal catalysts, such as copper salts,^{11,[3](#page-3-0)} remains an important challenge. Recently, a new $1, n$ enyne cascade cyclization strategy catalyzed by transition-metal catal[yst](#page-3-0)s using additional reagents was developed and is especially attractive for impressively increasing structural complexity;⁴ however, such successes are much less abundant. Moreover, approaches for the cyclization of remote 1,7-enynes using inexp[en](#page-3-0)sive copper catalysts are lacking.

Sulfur-containing heterocyclic compounds are widespread in natural products and synthetic compounds of high utility in pharmaceutical, agrochemical, and materials chemistry.⁵ As a result, the development of new efficient and selective routes to sulfur-containing heterocyclic compounds remains a con[tin](#page-3-0)uous hot topic in synthesis and industry. A typical procedure includes the incorporation of sulfur atoms from metal sulfides into organic frameworks for building the sulfur-containing heterocyclic ring scaffold by copper-catalyzed cross-coupling tandem reactions.⁶ We reasoned that metal sulfides may be used as additional reagents to initiate copper-catalyzed 1,n-enyne cascade cycliz[a](#page-3-0)tion.⁶ Herein, we report an unprecedented copper-catalyzed cascade cyclization of 1,7-enynes with metal sulfides for one-pot synt[h](#page-3-0)esis of important thieno[3,4-c]quinolin-4(5H)-ones⁷

through double C−S bond formation. Notably, the chemoselectivity toward 1,3,3a,9b-tetrahydrothieno[3,4-c]quinolin- $4(5H)$ -ones or 3,3a-dihydrothieno $\overline{3,4-c}$ quinolin- $4(5H)$ -ones can be controlled by simply changing the sulfur resources ($Na₂S·$ $9H₂O$ or K₂S). To the best of our knowledge, this method represents the first 1,n-enyne cascade cyclization using metal sulfides as the addition reagents through incorporation of a sulfur atom into the product system.

Our initial investigations focused on the cascade cyclization of N-methyl-N-(2-(phenylethynyl)phenyl)methacrylamide (1a) with $Na₂S·9H₂O$ for reaction condition optimization (Table 1). 1,7-Enyne 1a was found to furnish the desired 1,3,3a,9btetrahydrothieno $[3,4-c]$ quinolin-4(5H)-one 2a in 83% yield [to](#page-1-0)gether with only a trace of another 3,3a-dihydrothieno[3,4 c]quinolin-4(5H)-one product 3a upon exposure to CuCl₂, Cs_2CO_3 , Na₂S·9H₂O, and argon in DMF at 120 °C (entry 1). However, the absence of bases decreased the yield from 83% to 31% (entry 2). In light of these results, the effect of bases was examined: a series of other bases, including $Na₂CO₃$, CsOAc, CsF, and 'BuOK, could favor the reaction, albeit with lower reactivity (entries 3–6). The amount of $CuCl₂$ was subsequently examined, and the results showed that 20 mol % of $CuCl₂$ was preferred (entry 1 vs entries 7 and 8). Other copper salts, such as $CuBr₂ Cu(OAc)₂$, and CuCl, also displayed high catalytic activity for the reaction, although they were inferior to $CuCl₂$ (entry 1 vs entries 9−11). It should be noted that CuCl, a Cu(I) salt, is also effective for the reaction, delivering 2a in 75% yield (entry 11). Among the effects of other reaction parameters, including solvents (entries 12−14) and the reaction temperatures (entries 15 and 16), examined, it was found that DMF at 120 \degree C led to the optimized process (entry 1). We were surprised to find that by changing from $Na₂S·9H₂O$ to anhydrous $Na₂S$

Received: August 26, 2014 Published: November 11, 2014

Table 1. Screening of Optimal Conditions^a

^aReaction conditions: 1a (0.2 mmol), $\text{Na}_2\text{S-9H}_2\text{O}$ (1.2 mmol), [Cu] (20 mol %), base (0.6 mmol), and solvent (2 mL) under argon atmosphere for 24 h. The dr value is about 21:4 determined by ¹H NMR analysis of the crude product (trans (1-Ph/9b-H), trans (3a-Me/ 9b-H)-isomer is major, and cis (1-Ph/9b-H), trans (3a-Me/9b-H) isomer is minor). b [Cu] (10 mol %). c [Cu] (30 mol %). d Anhydrous $Na₂S$ (1.2 mmol). $K₂S$ (1.2 mmol) instead of $Na₂S₂H₂O$. *PhSSPh* (1.2 mmol) instead of $Na₂S·9H₂O.$ ⁸1a (1 g, 3.64 mmol) and solvent (10 mL) for 72 h.

(entry 17), K_2S (entry 18), or PhSSPh (entry 19) the chemoselectivity of the cyclizaiton was shifted from product 2a toward another product 3a in 65%, 77%, and 35% yield, respectively. Gratifyingly, a 1 g (3.64 mmol) scale reaction of 1,7 enyne 1a is successfully performed with $\text{Na}_2\text{S}\cdot\text{9H}_2\text{O}$, giving 2a in high yield (entry 20).

After determining the optimal reaction conditions, we turned our attention to investigating the scope of this cascade cyclization protocol by examining the enyne component with $Na₂S·9H₂O$ (Figure 1) or K_2S (Figure 2). As shown in Figure 1, 1,7-enyne with a free N−H bond was not a viable substrate for this cascade cyclization reaction (2b). Although 1,7-enyne having an N-allyl group was successfully reacted with $Na₂S·9H₂O$, $CuCl₂$, and $Cs₂CO₃$, removal of the allyl group took place leading to 2b in 58% yield. Use of N-Bn-substituted 1,7-enyne delivered 2d in 64% yield. 1,7-Enyne bearing a substituent, including Me, MeO, F, Cl, and Br, on the aromatic ring at the terminal alkyne performed well in the cascade cyclization under these optimal conditions, providing 2e−l in good yields. Interestingly, the cascade process could generate heteroaryl-containing products 2m−u when the heteroaryl groups, pyridinyl and thiophene-yl, are directly attached at the terminal alkyne. We were delighted to find that the reaction also accommodated several substituents,

Figure 1. Cyclization of 1,7-enynes (1) with $\text{Na}_2\text{S-9H}_2\text{O}$. Reaction conditions: 1 (0.2 mmol), Na₂S·9H₂O (1.2 mmol), CuCl₂, (20 mol %), $Cs₂CO₃$ (0.6 mmol), and DMF (2 mL) under argon atmosphere for 24 h. The dr value is given in the parentheses determined by ¹H NMR analysis of the crude product. The diastereoisomers are determined by 2D NMR analysis of products 2i and 2s: trans $(1-R^1/9b-H)$, trans $(3a-H)$ $R^4/9b$ -H)-isomer is major and *cis* (1- $R^1/9b$ -H), trans (3a- $R^4/9b$ -H)isomer is minor.

Figure 2. Cyclization of 1,7-enynes (1) with K₂S. Reaction conditions: 1 (0.2 mmol) , K₂S (1.2 mmol), CuCl₂ (20 mol %), Cs₂CO₃ (0.6 mmol), and DMF (2 mL) under argon atmosphere for 24 h.

including Me, Cl, F, and CF_3 , on the aryl of the N- $(2$ ethynylarylyl) moiety, giving the corresponding products 2v−aa in 51−82% yields. Finally, 1,7-enyne with a Bn group at the 2 position of the acrylamide moiety is effective for the construction of 2ab in moderate yield. Importantly, halide motifs are accommodated by the reaction conditions and provide further opportunities for additional modifications of the thieno[3,4 c]quinolin-4(5H)-one scaffold (2g−i,l,w−z). However, aliphatic alkyne has no reactivity for the reaction (2ac).

Next, we set out to exploit the scope of this cascade cyclization reaction using K_2S as the sulfur resource (Figure 2). To our delight, analogous 1,7-enyne with a N-Bn group instead of the N-Me group was also converted into dihydrothieno $[3,4-c]$ quinolin-4(5H)-one 3d in 71% yield. We obtained good yiel[ds](#page-1-0) of 3f and 3h from 1,7-enynes with a p -MeC₆H₄ or a p -ClC₆H₄ group at the terminal alkynes. A range of heteroaryl alkynes could be successfully accommodated by the reaction with K_2S , CuCl₂, and Cs_2CO_3 (3n, 3p, 3q, 3s, and 3t), and even a Cl-substituted enyne worked well to form 3x in high yield. Notably, a 1,7-enyne with a Bn group at the 2 position of the acrylamide moiety was also viable for constructing 3ab in good yield.

In light of the results of Table 1 and Figures 1 and 2, the chemoselectivity toward products 2 and 3 was based on the sulfur resource, $Na₂S·9H₂O$ or K₂S, su[gg](#page-1-0)esting that the hydrogen atoms in th[e](#page-1-0) new formed C−[H](#page-1-0) bonds of 2 may be from H_2O .⁸ To verify these, two control experiments with D_2O were investigated (eqs 1 and 2; Sche[m](#page-3-0)e 1).⁹ As expected, deuterium

Scheme 1. Control Experiments

atoms were incorporated into $2a$, and K_2S combined with D_2O could deliver deuterated product $2n-[D]_2$ along with 3n. The results of eq 3 show that alkene 1ad is not a suitable substrate for the reaction.^{8e} Notably, product 3a cannot be hydrogenated by the Na₂S·9H₂O/CuCl₂/Cs₂CO₃ system (eq 4). This suggests that the hy[dro](#page-3-0)genation reaction is not a sole step during the whole cyclization process. 8 Using 1,2-diphenylethyne (1ae) to react with Na₂S·9H₂O under the optimal conditions only afforded (E) -1,2-diphenyl[et](#page-3-0)hene $(4ae)$, a hydrogenation product, implying that the addition of S atom takes place at the acrylate unit (eq 5). 8 Notably, CuCl showed high catalytic activity for the reaction (entry 11; Table 1). The results suggest that the $Cu(I)$ specie[s p](#page-3-0)lays a major role in the current reaction.

The mechanisms outlined in Scheme 2 were proposed for this cascade cyclization reaction.^{2−4,7,8} Initially, coordination of the

Scheme 2. Possible Mecha[nisms](#page-3-0)

active Cu^I species with the C−C triple bond and the C−C double bond in 1,7-enyne 1a afforded intermediate A. In the presence of $Na₂S·9H₂O$, intermediate A readily reacts with Na \overline{HS}^8 in situ generated from $\text{Na}_2\text{S}\cdot\text{9H}_2\text{O}$, to provide intermediate **B**, followed by addition to form intermediate C. cis-Nucleophilic c[ycl](#page-3-0)ization of intermediate C gives intermediate D. Finally, protonation of intermediate **D** via *trans*-addition of H_2O to the C−Cu bond delivers trans,trans-2a as the major isomer and regenerates the active Cu¹ species. Using K_2S reacted intermediate A forms intermediate E. Nucleophilic addition and cyclization of intermediate E take place to afford intermediate F, followed by the second nucleophilic cyclization of intermediate F to give 3a.

In summary, we have illustrated the first Cu-catalyzed cascade cyclization of 1,7-enynes by incorporating a sulfur atom into the product system using metal sulfides as sulfur resources. This method proceeds through 1,7-enyne cyclization and double C−S bond formation cascade and provides a valuable one-pot assembly of thieno $[3,4-c]$ quinolin-4(5H)-ones from a broad range of enynes with good yields and excellent functional group tolerance.

■ ASSOCIATED CONTENT

6 Supporting Information

Descriptions of experimental procedures for compounds and analytical characterization. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: jhli@hnu.edu.cn.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank the Natural Science Foundation of China (No. 21172060), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120161110041), and Hunan Provincial Natural Science Foundation of China (No. 13JJ2018) for financial support.

■ REFERENCES

(1) For selected reviews: (a) Trost, B. M. Acc. Chem. Res. 1990, 23, 34. (b) Tsuji, J. Palladium Reagents and Catalysts; John Wiley & Sons: Chichester, 1995. (c) Trost, B. M.; Krische, M. J. Synlett 1998, 1.

(d) Trost, B. M. Chem.-Eur. J. 1998, 4, 2405. (e) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (f) Bruneau, C. Angew. Chem., Int. Ed. 2005, 44, 2328. (g) Zhang, L.; Sun, J.; Kozmin, S. Adv. Synth. Catal. 2006, 348, 2271. (h) Zhang, Z.; Zhu, G.; Tong, X.; Wang, F.; Xie, X.; Wang, J.; Jiang, L. Curr. Org. Chem. 2006, 10, 1457. (i) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134. (j) Marco-Contelles, J.; Soriano, E. Chem.—Eur. J. 2007, 13, 1350. (k) Fürstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410. (I) Michelet, V.; Toullec, P. Y.; Genêt, J.-P. Angew. Chem., Int. Ed. **2008**, 47, 4268. (m) Jiménez-Núñez, E.; Echavarren, A. M. C*hem. Rev.* 2008, 108, 3326. (n) Lee, S. I.; Chatani, N. Chem. Commun. 2009, 371. (o) Watson, I. D. G.; Toste, F. D. Chem. Sci. 2012, 3, 2899. (p) Wille, U. Chem. Rev. 2013, 113, 813. (q) Tietze, L. F.; Brasche, G.; Gericke, K. M. Domino Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2006. (r) Xu, P.-F.; Wang, W. Catalytic Cascade Reactions; John Wiley & Sons: Hoboken, NJ, 2013.

(2) For special reviews on the 1,7-enyne cyclization via the cycloisomerisation, skeletal rearrangement, or metathesis strategies, see: (a) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635. (b) Fairlamb, I. J. S. Angew. Chem., Int. Ed. 2004, 43, 1048. (c) Lee, S. I.; Chatani, N. Chem. Commun. 2009, 4, 371. (d) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. (e) Villar, H.; Frings, M.; Bolm, C. Chem. Soc. Rev. 2007, 36, 55.

(3) For papers on the copper-catalyzed cyclization of 1,n-enynes, see: (a) Fehr, C.; Farris, I.; Sommer, H. Org. Lett. 2006, 8, 1839. (b) Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 2006, 45, 2901. (c) Patil, N. T.; Wu, H.; Yamamoto, Y. J. Org. Chem. 2005, 70, 4531. (d) Fehr, C.; Magpantay, I.; Arpagaus, J.; Marquet, X.; Vuagnoux, M. Angew. Chem., Int. Ed. 2009, 48, 7221. (e) Fehr, C.; Vuagnoux, M.; Buzas, A.; Arpagaus, J.; Sommer, H. Chem.-Eur. J. 2011, 17, 6214. (f) Fehr, C.; Vuagnoux, M.; Sommer, H. Chem.—Eur. J. 2011, 17, 3832. (g) Wang, Z.-Q.; Zhang, W.-W.; Gong, L.-B.; Tang, R.-Y.; Yang, X.-H.; Liu, Y.; Li, J.-H. Angew. Chem., Int. Ed. 2011, 50, 8968.

(4) For papers on the cyclization of 1,7-enynes with additional reagents, including alkoxycyclization with alcohols, see: (a) Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. Chem.-Eur. J. 2003, 9, 2627. (b) Nevado, C.; Charruault, L.; Michelet, V.; Nieto-Oberhuber, C.; Muñoz, M. P.; Méndez, M.; Rager, M.; Genét, J.-P.; Echavarren, A. M. Eur. J. Org. Chem. 2003, 706. Cyclization with aldehydes: (c) Schelwies, M.; Moser, R.; Dempwolff, A. L.; Rominger, F.; Helmchen, G. Chem. Eur. J. 2009, 15, 10888. Oxidative cyclization with acetic acid: (d) Welbes, L. L.; Lyons, T. W.; Cychosz, K. A.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 5836. (e) Lyons, T. W.; Sanford, M. S. Tetrahedron 2009, 65, 3211. (f) Tong, X.; Beller, M.; Tse, M. K. J. Am. Chem. Soc. 2007, 129, 4906. (g) Tsujihara, T.; Takenaka, K.; Onitsuka, K.; Hatanaka, K.; Sasai, H. J. Am. Chem. Soc. 2009, 131, 3452. Pauson-Khand-type cyclization with CO: (h) Geis, O.; Schmalz, H. Angew. Chem., Int. Ed. 1998, 37, 911. (i) Blanco-Urgoiti, J.; Añorbe, L.; Pérez-Serrano, L.; Domínguez, G.; Pérez-Castells, J. Chem. Soc. Rev. 2004, 33, 32. (j) Rodríguez-Rivero, M.; Adrio, J.; Carretero, J. C. Eur. J. Org. Chem. 2002, 2881. (k) Ingate, S. T.; Marco-Contelles, J. L. Org. Prep. Proced. Int. 1998, 30, 123. Carboxylative cyclization with CO_2 : (1) Takimoto, M.; Mizuno, T.; Sato, Y.; Mori, M. Tetrahedron Lett. 2005, 46, 5173. (m) Takimoto, M.; Mizuno, T.; Mori, M.; Sato, Y. Tetrahedron 2006, 62, 7589. Borylative cyclization with $B_2(pin)_2$: (n) Pardo-Rodríguez, V.; Buñuel, E.; Collado-Sanz, D.; Cárdenas, D. J. *Chem. Commun*. **2012**, 48, 10517. Cyclization with $ArgQ_2Cl$: (o) Deng, G.-B.; Wang, Z.-Q.; Xia, J.-D.; Qian, P.-C.; Song, R.-J.; Hu, M.; Gong, L.-B.; Li, J.-H. Angew. Chem., Int. Ed. 2013, 52, 1535. Oxidative cyclization with t-BuONO: (p) Liu, Y.; Zhang, J.-L.; Song, R.-J.; Qian, P.-C.; Li, J.-H. Angew. Chem., Int. Ed. 2014, 53, 9017.

(5) For selected reviews, see: (a) Lednicer, D. The Organic Chemistry of Drug Synthesis; Wiley Interscience: New York, 1999; Vol. 6, p 187. (b) Roncali, J. Chem. Rev. 1992, 92, 711. (c) Zaumseil, J.; Sirringhaus, H. Chem. Rev. 2007, 107, 1296. (d) Mishra, A.; Ma, C.-Q.; Bäuerle, P. Chem. Rev. 2009, 109, 1141. (e) Hartough, H. D.; Hochgesang,F. P.; Blicke, F. F. Chemistry of Heterocyclic Compounds: Thiophene and its Derivatives; John Wiley & Sons: Hoboken, 2008. (f) Mishra, R.; Jha, K. K.; Kumar,

S.; Tomer, I. Pharma Chem. 2011, 3, 38. (g) Sałat, K.; Moniczewski, A.; Librowski, T. Mini Rev. Med. Chem. 2013, 13, 335.

(6) For selected papers, see: (a) Gronowitz, S.; Timari, G. J. Heterocycl. Chem. 1990, 27, 1501. (b) Ombetta, J. E.; Lyet, S.; Xicluna, A.; Robert, J. F.; Panouse, J. J. Ann. Pharm. Fr. 1989, 46, 377. (c) El-Abadelah, M. M.; Nazer, M. Z.; Okasha, S. F.; Calas, M.; Bompart, J.; Mion, P. Eur. J. Med. Chem. 1998, 33, 33. (d) Shinkwin, A. E.; Whish, W. J. D.; Threadgill, M. D. Bioorg. Med. Chem. 1999, 7, 297. (e) Koerber, S. C.; Rizo, J.; Struthers, R. S.; Rivier, J. E. J. Med. Chem. 2000, 43, 819. (f) Pereillo, J. M.; Maftouh, M.; Andrieu, A.; Uzabiaga, M. F.; Fedeli, O.; Savi, P.; Pascal, M.; Herbert, J. M.; Maffrand, J. P.; Picard, C. Drug Metab. Dispos. 2002, 30, 1288. (g) Buchstaller, H.-P.; Siebert, C. D.; Steinmetz, R.; Frank, I.; Berger, M. L.; Gottschlich, R.; Leibrock, J.; Krug, M.; Steinhilber, D.; Noe, C. R. J. Med. Chem. 2006, 49, 864. (h) Zhao, G.; Iyengar, R. R.; Judd, A. S.; Cool, B.; Chiou, W.; Kifle, L.; Frevert, E.; Sham, H.; Kym, P. R. Bioorg. Med. Chem. Lett. 2007, 17, 3254. (i) Lindvall, M.; McBride, C.; McKenna, M.; Gesner, T. G.; Yabannavar, A.; Wong, K.; Lin, S.; Walter, A.; Shafer, C. M. ACS Med. Chem. Lett. 2011, 2, 720. (j) M. Poduval, K.; Burrezo, P. M.; Casado, J.; Navarrete, J. T. L.; Ortiz, R. P.; Kim, T.-H. Macromolecules 2013, 46, 9220. (k) Goerlitzer, K.; Gabriel, B.; Jomaa, H.; Wiesner, J. Pharmazie 2006, 61, 901. (l) McCauley, J. A.; Rajapakse, H. A.; Greshock, T. J.; Sanders, J.; Kim, B.; Rada, V. L.; Kern, J. T.; Stevenson, H. H.; Bilodeau, M. T. Preparation of thieno $[3,4-c]$ pyridin-4(5H)-one derivatives as inhibitors of Leucine-rich repeat kinase. PCT Int. Appl. WO 2012058193 A1 20120503, 2012.

 (7) Na₂S: (a) Shvartsberg, M. S.; Ivanchikova, I. D. ARKIVOC 2003, 87. (b) Ma, D.; Xie, S.; Xue, P.; Zhang, X.; Dong, J.; Jiang, Y. Angew. Chem., Int. Ed. 2009, 48, 4222. (c) Li, C.-L.; Zhang, X.-G.; Tang, R.-Y.; Zhong, P.; Li, J.-H. J. Org. Chem. 2010, 75, 7037. K₂S: (d) You, W.; Yan, X.; Liao, Q.; Xi, C. Org. Lett. 2010, 12, 3930. (e) Zhang, X.; Zeng, W.; Yang, Y.; Huang, H.; Liang, Y. Org. Lett. 2014, 16, 876. KSCN: (f) Ke, F.; Qu, Y.; Jiang, Z.; Li, Z.; Wu, D.; Zhou, X. Org. Lett. 2011, 13, 454. Na2S2O3: (g) Qiao, Z.; Liu, H.; Xiao, X.; Fu, Y.; Wei, J.; Li, Y.; Jiang, X. Org. Lett. 2013, 15, 2594. (h) Qiao, Z.; Wei, J.; Jiang, X. Org. Lett. 2014, 16, 1212.

(8) For selected papers on the use of $\rm Na_2S\cdot 9H_2O$ as the reducing agent: (a) Shiao, M.-J.; Lai, L.-L.; Ku, W.-S.; Lin, P.-Y.; Hwu, J.-R. J. Org. Chem. 1993, 58, 4742. (b) Steinbach, J.; Mäding, P.; Füchtner, F.; Johannsen, B. J. Labelled Compd. Radiopharm. 1995, 36, 33. (c) Yadav, G. D.; Lande, S. V. Adv. Synth. Catal. 2005, 347, 1235. (d) He, Q.; Wang, C.; Jiang, Q.; Shen, Y. Chin. J. Org. Chem. 2009, 29, 105. (e) Chen, Z.; Luo, M.; Wen, Y.; Luo, G.; Liu, L. Org. Lett. 2014, 16, 3020.

(9) The detailed data, including the deuterium-labeled experiments (Figure S1) and 2D NMR analysis of products 2i and 2s, are summarized in the Supporting Information.

■ NOTE ADDED AFTER ASAP PUBLICATION

Figure 1 was repl[ace](#page-2-0) [on](#page-2-0) [November](#page-2-0) [21,](#page-2-0) 2014.